A Hepatic Outflow Obstruction (Budd-Chiari Syndrome)
Case Due to Multiple Hypercoagulable Status

Yusuf Yazgan (*), Kemal Oncu (*), Mustafa Kaplan (*), Alpaslan Tanoglu (*), İrfan Küçük (*), Halil Onur Ozarı (*), Levent Demirturk (*), Murat Velioglu (**)

SUMMARY

We present here a case of a 22-year-old male patient with Budd-Chiari syndrome owing to alliance of multiple hypercoagulable conditions. The patient was admitted to our hospital for assessment of hepatosplenomegaly and ascites. By doppler ultrasonography, computed tomography and vena cavaography, Budd-Chiari syndrome was diagnosed. Results of diagnostic tests exhibited decreased activity, decreased antigenic concentration of Antithrombin, low protein C activity, heterozygote Factor V Leiden mutation. In clinical progress, acute severe hepatic failure with encephalopathy occured and the patient was transferred to an another medical center for liver transplantation.

Key words: Budd-Chiari Syndrome, Antithrombin deficiency, low protein C activity, Factor V Leiden mutation, acute hepatic failure

ÖZET

Birden Çok Nedene Bağlı Bir Budd-Chiari Sendromu Vakası

Anahtar kelimeler: Budd-Chiari Sendromu, Antitrombin eksikliği, düşük protein C aktivitesi, Faktör V Leiden mutasyonu, akut hepatik yetmezlik
hospital, in the control examination, laboratory examinations revealed elevated erythrocyte sedimentation rate, high C reactive protein (CRP) level and pleural effusion. Owing to these laboratory findings and dyspnea he was referred to Pulmonary Medicine Service, in January 2010. In that service, he was diagnosed as pulmonary thromboembolism and warfarin was given. At that time the cause of the thromboembolism was not examined. He gave up taking warfarin without awareness of his doctors. Four months later, the patient presented to a provincial hospital complaining of abdominal dullness and fatigue. In that hospital, hepatosplenomegaly and ascites was diagnosed and he was referred to our service. Socially, he was a bachelor. He had no history of previous alcohol drinking or smoking. He was sexually inactive. Family history was negative.

On physical examination, the vital signs showed a temperature of 36 C, heart rate of 74 beats/min, and a respiratory rate of 16/minute, a blood pressure of 110/70 mmHg, and an oxygen saturation of 97% on room air. His height was 1.62 cm, and weight was 54 kg. He was looking older than his stated age and he was malnourished. Pulmonary auscultation displayed decreased lung sounds at the lower part of the lungs and cardiovascular examination showed no pathology. Abdominal examination revealed mild hepatosplenomegaly and ascites. There was an operation scar on the right hip. Spider angioma, palmar erythema and pretibial edema were all absent.

Laboratory data showed a normal white cell count. The hemoglobin was 11.1 g/dL and hematocrit was 34,2%, platelets was 283×103/mL. A comprehensive routine blood count panel was as follows: Albumin 3.2 g/dl, alanine aminotransferase 28 IU/l, aspartate aminotransferase 40 IU/I, total bilirubin 1.4 mg/dl, gamma-glutamyltransferase 44 IU/l, prothrombin time 16.9 seconds, creatinine 1.22 mg/dl, ceruloplasmin 405 IU/I, serum copper 136 mcg/ml, parathormone 143 pg/ml, cyanocobalamine 629 pg/ml, C-reactive protein (CRP) 25 mg/dl(normal range,0-8), Rose Bengal-Negative, Hepatitis A, B, and C antibodies were all negative, HIV was non-reactive, Cold agglutinin test-Negative, Venereal Disease Research Laboratory (VDRL)-Negative, antineutrophil cytoplasm antibodies (c-ANCA), antineutrophil perinuclear antibodies (p-ANCA), antinuclear antibodies (ANA) and anticytadilipin antibodies (ACA IgM, IgG) were all negative, but antismooth muscle antibodies (ASMA) were positive, antiphospholipid
antibodies-Negative, homocysteine 13.69 mc mol/l (normal range, 6-12), antithrombin antigen concentration 15.5 mg/ dl (normal range, 19-31), AT activity 38.4% (normal range, 83-110), protein C activity 60.4% (normal range, 70-140), protein S activity 71.5% (normal range, 58-128), factor V Leiden mutation analyse- Heterozygote mutant, MTHFR C677T mutation analyse- Homozygote mutant. Abdominal paracentesis performed and serum-ascites albumin gradient was <1.1. Malignity examination of ascites was negative.

Ultrasonography of the abdomen demonstrated hepatosplenomegaly. Computed tomography of the abdomen revealed hepatosplenomegaly, suspected thrombus formation in the vena cava inferior at the suprarenal and infrarenal levels, heterogeneity of liver parenchyma, massive ascites and prediagnosis of Budd-Chiari Syndrom (Fig.1). In doppler ultrasonography of the liver, there was a very slow flow in the hepatic veins with portal venous collaterals. Upper gastrointestinal system endoscopy revealed Grade I-II esophagus varices. Inferior/superior vena cavography showed total occlusion of inferior vena cava and lower extremity venous drainage was flowing directly to superior vena cava via paravertebral collaterals and hemiazygous vein (Fig.2). The venous phase of selective superior mesenteric arterial angiography demonstrated extrahepatic collateral veins and low density filling of portal vein (Fig. 3).

As a result of all physical examinations, clinical picture, laboratory and imaginary findings Budd-Chiari Syndrom was diagnosed. Liver biopsy was not performed because the patient denied it. The patient consulted to cardiovascular surgeons for thrombectomy. After the comment of unclearable thrombus, we began low molecule weight heparin therapy. Unfortunately acute hepatitis and hepatic encephalopathy occurred. Due to his family’s request he referred to another hospital for liver transplantation.

Discussion

The Budd–Chiari syndrome (BCS) is an uncommon but clinically important disorder which was defined as obstruction of hepatic venous outflow anywhere from the small hepatic veins to the suprahepatic inferior vena cava (1). In the developed countries, thrombosis is the most common cause of BCS. Complications caused by portal hypertension and deterioration of liver function are the main features of this syndrom.

In previous studies, factor V Leiden mutation was detected in nearly 20% of cases with BCS. BCS occurs easily in those particular patients who have additional risk factors like pregnancy, using oral contraceptives etc. (6). Factor V Leiden is the most frequent reason of inherited thrombophilia, accounting for nearly 50% of all cases. Factor V is an inactive cofactor which is activated by thrombin. This activation reaction results as factor Va formation, which then acts as a cofactor in the activation of prothrombin to thrombin. The factor V Leiden mutation conduces to a hypercoagulable condition for two reasons, increased coagulation and decreased anticoagulation. Genetic and acquired conditions are the two main causes for APC resistance. Heterozygosity for the factor V Leiden mutation accounts for nearly 90-95 percent of cases of the APC resistance phenotype. A very smaller number of homozygotes exist. Acquired conditions include elevated factor VIII levels, use of oral contraceptives, pregnancy, the existence of antiphospholipid antibodies and some of unknown causes (7).

Antithrombin, also known as heparin cofactor I, is a vitamin K-independent glycoprotein, a physiological inhibitor of serine-proteases (Xa,IXa), and most important inhibitor of thrombin. Deficiency of AT is a well described risk factor for thrombophilia and the gene for AT has been localized at chromosome 1. There are acquired and hereditary forms of AT deficiency. Hereditary AT deficiency which is usually autosomal dominant was the first recognised reason of thrombophilia (8). Acquired deficiency has been documented in pregnancy, oral contraceptives usage and after surgery or trauma (9). The most common presentation sites of thrombophilia are the deep
Protein C is a vitamin K-related protein and it is synthesized in the liver. The gene for protein C is localized at chromosome 2 and is closely related to the gene for factor IX (11). There are two subtypes of protein C deficiency (12). The type I deficiency is the more common type in which plasma protein C concentrations are usually decreased (13). Patients with the type II deficiency have normal plasma protein C antigen levels with decreased functional activity. There are three clinical syndromes are associated with protein C deficiency: Venous thromboembolism, neonatal purpura fulminans and warfarin-induced skin necrosis. In the previous studies, congenital protein C deficiency was detected in approximately 2 to 5 percent of cases presenting with thromboembolism (14).

In our patient, both decreased functional activity and antigen concentration of AT was determined and also protein C deficiency and heterozygote Factor V Leiden mutation were diagnosed for the causes of Budd-Chiari Syndrom. The findings of abdominal and doppler ultrasonography, upper GIS endoscopy, CT, MR and angiography-cavagraphy suggested and diagnosed Budd-Chiari Syndrom. It is a very rare encountered BCS case underlying three different causes. Deficiencies in protein S, C and AT have been informed as factors for BCS. However, in the view of normal physical examination, normal liver and kidney functions, heterozygote Factor V Leiden mutation and previously pulmonary thromboembolism history, multiple congenital hypercoagulable status accused for the current BCS event.

There have been four previously reported therapeutic options for BCS: medical treatment, surgical decompression, TIPSS placement/stent insertion into the hepatic veins, and liver transplantation (15). However, none of these options alone is the gold standart for the therapy, but their combination may provide long-term survival. As a matter of fact, it is very crucial to treat the problem underlying the thrombosis and it is very critical to prevent progression of thrombosis. In our patient we prescribed low molecule weight heparin and planned to continue with warfarin therapy. Unfortunately our patient got worse, acute liver failure with severe encephalopathy occurred and we referred him to another hospital for liver transplantation.

In conclusion, we have reported a very rare coexistence of multiple hypercoagulable situations (decreased activity, decreased antigenic concentration of AT, low protein C activity, heterozygote Factor V Leiden mutation) which caused Budd-Chiari Syndrom. BCS is a rare but crucial situation and thrombofilia is the underlying factor. A complete search for thrombofilia is very critical and should not be stopped after identification of a sole cause, because patients may have more than one underlying disorder as our patient.

References