The effect of somatostatin in the treatment of neoplastic chylothorax

Orhan Yücel (*), Alper Gözübüyük (*), Sedat Gürkök (*), Ersin Sapmaz (*), Mustafa Öztürk (**), Onur Genç (*)

SUMMARY
Chylothorax is the accumulation of lymphatic fluid within the pleural space. Chylothorax can occur in various clinical settings and arise from diverse causes. Tumor has been the most common cause of the series and responsible for approximately one half of the cases (1,2). Chylous leakage can result from either a rupture of the duct secondary to back pressure or direct tumor invasion of the duct (2). Traditionally, lymphoma accounted for approximately three fourth of the tumor group, with bronchogenic carcinoma and other tumors making up the remainder (2).

The ideal management of the patient with chylothorax is still uncertain. Treatment of chylothorax can be divided into conservative therapy, operative therapy, and radiation therapy (1,2). Conservative therapy consists of maintaining; use of a low high protein diet, supplemented with medium chain triglycerides or total parenteral nutrition combined with effective pleural drainage to provide the expansion of the lung (2,3). Recent reports have suggested that octreotide, by value of its direct action on lymphatic flow, has been useful in resolution of neoplastic chylothorax in the adult population (4). We herein report prompt cessation of lymphorrhea in an adult patient with chylothorax using octreotide, a long-acting somatostatin analog.

Key words: Chylothorax, neoplastic chylothorax, octreotide, somatostatin

Introduction
Chylothorax is the accumulation of lymphatic fluid within the pleural space. Chylothorax can occur in various clinical settings and arise from diverse causes. Tumor has been the most common cause of the series and responsible for approximately one half of the cases (1,2). Chylous leakage can result from either a rupture of the duct secondary to back pressure or direct tumor invasion of the duct (2). Traditionally, lymphoma accounted for approximately three fourth of the tumor group, with bronchogenic carcinoma and other tumors making up the remainder (2).

The ideal management of the patient with chylothorax is still uncertain. Treatment of chylothorax can be divided into conservative therapy, operative therapy, and radiation therapy (1,2). Conservative therapy consists of maintaining; use of a low high protein diet, supplemented with medium chain triglycerides or total parenteral nutrition combined with effective pleural drainage to provide the expansion of the lung (2,3). Recent reports have suggested that octreotide, by value of its direct action on lymphatic flow, has been useful in resolution of neoplastic chylothorax in the adult population (4). We herein report prompt cessation of lymphorrhea in an adult patient with chylothorax using octreotide, a long-acting somatostatin analog.

Case Report
A 50-year-old woman was diagnosed to have non-Hodgkin lymphoma three years ago by bone marrow examination. First complete remission was achieved after the use of 6 cycles of CHOP (Cyclophosphamide, doxorubicin, vincristine, prednisolone) and radiotherapy to the lumbar region for her multiple vertebral hipodens lesions. Due to high International Prognostic Index (IPI) score, autologous stem cell transplantation (ASCT) was planned. She was given two cycles of ICE (Ifosfamid, carbopla-
In the management of chylothorax, accumulation of a milky white fluid from a pleural space, usually results from either a rupture of the duct secondary to back pressure or direct tumor invasion of the thoracic duct. More than 50% of chylothorax is due to malignancy, and lymphoma accounts for 75%, followed by lung carcinoma (5). Management of chylothorax includes treatment of the underlying disease associated with other conservative measures, such as drainage of pleural effusion, maintenance of nutritional condition, operative therapy and radiation therapy (1). Surgical therapy is proposed in selected cases when conservative treatments fail. Octreotide, which is an analog of somatostatin has been preferred in the treatment of neoplastic chylothorax for 15 years (4). The mechanism of action of somatostatin in chylothorax remains uncertain (6). Somatostatin causes mild vasoconstriction of splanchnic vessels and reduces gastric, pancreatic and intestinal secretions as well as intestinal absorption and hepatic venous flow, which collectively may act in concert to reduce chyle flow. As a result somatostatin reduces the thoracic duct flow and its triglyceride level (6). Octreotide is a long acting somatostatin analogue. Octreotide is similar in action to somatostatin, but selectivity is superior and has longer half life (3,6). The use of octreotide as an adjunct to the conservative management of neoplastic chylothorax is a relatively new concept (1,4). The literature does not specifically address the dose of octreotide in neoplastic chylothorax in the adult. Recently, octreotide has been successfully utilized in the treatment of neoplastic chylothorax and subcutaneous injection of 0.1 mg every 8 hours as advised by Nicholas et al. (4).

We report an adult patient in whom introduction of somatostatin immediately diminished chyle production. The reported side effects of octreotide are arrhythmia, headache, nausea, vomiting, diarrhea, dizziness, thromboctopenia, hepatotoxicity, and other reactions (4,6). We did not observe any of these side effects.

We believe that the effectiveness of octreotide therapy cannot prove its safety in only a few cases. However, further controlled studies which contain larger series are required for the confirmation of our result for designation of effectiveness of this agent, the definition of the effective dosage, and the long-term effectiveness of octreotide therapy. Additionally somatostatin therapy has a financial advantage due to the avoidance of an operation and the reduction of hospitalization time. Our case and other reported cases showed acceptable efficacy in the management of neoplastic chylothorax. Further reports and studies assessing octreotide efficacy in the management of chylothorax are warranted.

Discussion

Figure 1. The treatment stages of malignant chylothorax
References